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SUMMARY

Despite the current availability of selective inhibitors
for the classical nuclear export pathway, no inhibitor
for the classical nuclear import pathway has been
developed. Here we describe the development of
specific inhibitors for the importin a/b pathway using
a novel method of peptide inhibitor design. An activ-
ity-based profile was created via systematic muta-
tional analysis of a peptide template of a nuclear
localization signal. An additivity-based design using
the activity-based profile generated two peptides
with affinities for importin a that were approximately
5 million times higher than that of the starting tem-
plate sequence. The high affinity of these peptides
resulted in specific inhibition of the importin a/b path-
way. These peptide inhibitors provide a useful tool
for studying nuclear import events. Moreover, our
inhibitor design method should enable the develop-
ment of potent inhibitors from a peptide seed.

INTRODUCTION

Active import of proteins in the nucleus is primarily determined

by the interaction of nuclear localization signals (NLSs) con-

tained in cargo proteins and with specific NLS receptors, includ-

ing the importin a and importin b families (Görlich et al., 1995;

Jans et al., 2000). Importin a, the main NLS receptor, relieves

its autoinhibition (established through intramolecular interaction

through the N-terminal importin b-binding (IBB) domain) by inter-

acting with importin b1; this enables high-affinity binding of

importin a to an NLS within a cargo. The importin a/b-cargo com-

plex enters the nucleus and is dissociated by the binding of

Ran-GTP to importin b1, which induces recycling of the impor-

tins to the cytoplasm (Görlich and Kutay, 1999; Weis, 2003).

The nuclear pore protein Nup2p and the importin a-export com-

plex Cse1p-Ran-GTP also contribute to the importin a-cargo

dissociation (Gilchrist et al., 2002; Gilchrist and Rexach, 2003;

Hood et al., 2000; Hood and Silver, 1998; Solsbacher et al.,

2000). In addition to the importin a/b pathway, it is known that

there are at least 10 importin b-dependent nuclear import/export

pathways. Importin a-independent pathways mediate the nu-

clear import of a number of specific proteins, the NLSs of which

are directly recognized by several importin b members, including
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importin b1 and importin b2 (transportin) (Harel and Forbes,

2004).

Importin a recognizes two classes of NLS, termed the classical

NLSs, which are either monopartite (with a single cluster of basic

amino acid residues) or bipartite (with two clusters of basic

amino acids separated by a 10–12 aa linker) (Lange et al.,

2007). The SV40 large T antigen NLS (PKKKRKV) and nucleo-

plasmin NLS (KRPAATKKAGQAKKKK) have often been cited

as prototypes of monopartite and bipartite NLSs, respectively.

The monopartite NLS has been defined as a sequence com-

posed of at least four consecutive basic amino acids or repre-

sented by a putative consensus sequence, K(K/R)X(K/R), where

X indicates any amino acid. A putative consensus sequence of

the bipartite NLS has been defined as (K/R)(K/R)X10–12(K/R)3/

5, where (K/R)3/5 represents a region in which at least three of

five consecutive amino acids are either lysine or arginine, and

in which the linker region has been found to be tolerant to amino

acid conversion (Robbins et al., 1991). Despite these definitions

of minimum consensus patterns, a strict consensus has yet to be

established because of sequence diversity.

Nuclear export of proteins is mediated mainly by an importin

b member, termed CRM1 or exportin, which recognizes nuclear

export signals (NESs) contained in cargo proteins (Weis, 2003).

Leptomycin B, an antifungal antibiotic from a Streptomyces

strain, targets CRM1 and specifically inhibits the CRM1-depen-

dent nuclear export pathway (Yashiroda and Yoshida, 2003).

This inhibitor has been used as a reagent in studying for nuclear

export activities or NESs. In the case of nuclear import, there is

currently no general inhibitor available, although a cell-permeable

peptide containing an NF-kB NLS has been developed as an

inhibitor for the nuclear import of a subset of stress-responsive

transcription factors, including NF-kB, AP-1, NFAT, and STAT1,

and this has often been used as an inhibitor of NF-kB (Lin et al.,

1995; Torgerson et al., 1998). Recently, a nuclear import inhibitor

specific to the transportin-dependent pathway has been devel-

oped by a structure-based design (Cansizoglu et al., 2007).

Because peptide inhibitors can cover large interface areas that

are required for protein-protein interaction, they have a potential

to interact with targets more strongly than small molecule inhibi-

tors. Two current strategies for developing peptide inhibitors are

as follows: (i) those based on directed evolution involving high-

throughput library screening, and (ii) rational design involving

the use of sequence and structural information regarding

protein-protein interfaces (Privé and Melnick, 2006; Sato et al.,

2006). These strategies, however, are often unsuccessful in

generating specific, high-affinity peptide binders because the
lsevier Ltd All rights reserved
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Figure 1. Activity-Based Profile of a Classical Bipartite NLS

A single amino acid residue within the template sequence indicated in the top line in the matrix was replaced with various other residues indicated in the left

column, and the nuclear import activity was assayed in budding yeast. Activity scores were determined as in Figure S1. At several mutational positions, modified

templates with different levels of basal activity were used to obtain scores less than 1 and greater than 10. Blanks represent undetermined scores. Scores with

higher, slightly higher, and lower activities than an average value for each position are shown in red, orange, and blue, respectively.
directional evolution often results in isolation of nonspecific

binders and involves trial-and-error experiments. The rational de-

sign also requires structural information of target proteins and

theoretical framework for designing inhibitors. The disadvantage

of these strategies necessitates the development of more effec-

tive strategies for obtaining specific, potent peptide inhibitors.

In this study, we present a strategy for designing potent pep-

tide inhibitors. The strategy optimizes peptide sequences by

selecting the residues with the highest activity scores that are

represented in an activity-based peptide profile. Using a profile

generated from an NLS template sequence, we developed the

first nuclear import inhibitors that are specific for the importin

a/b pathway.

RESULTS

Activity-Based Profiling of a Bipartite NLS
Highlights Position-Dependent Activating
and Repressing Residues
To determine the patterns and amino acid residues responsible

for nuclear import activity of an importin a-dependent classical

NLS, we conducted a systematic amino acid replacement anal-

ysis for a bipartite NLS, which can yield a potentially stronger

activity than the monopartite NLS (Hodel et al., 2001). We used

an artificial bipartite NLS as a template, comprising 28 amino

acids that contain the minimum consensus and that exhibit

a moderate level of activity in budding yeast and mammalian

cells. We systematically replaced the residue at each position

with as many other amino acids as possible. Mutated sequences

were analyzed for nuclear import activity with a reporter of b-glu-

curonidase (GUS) fused with green fluorescent protein (GFP) in

yeast; their activities were scored on a 10-point scale based

on the extent of nuclear localization (see Figure S1 available on-

line). Overall findings are represented in a score matrix showing

an activity-based NLS profile (Figure 1). The profile revealed pre-

viously unrecognized features of bipartite NLSs and highlighted
Chemistry & Biology 15, 940–9
a number of specific residues that activate or repress the overall

activity of the NLS in a position-dependent manner. Though

basic and acidic residues were activators and repressors, re-

spectively, in the regions adjacent to the core basic stretches,

this was reversed (i.e., basic residues were repressors, acidic

residues activators) in the central linker region (Figure 1 and

Figure S2). Within the N- and C-terminal basic regions, a specific

basic pattern and residue were required for activity. Activating

and repressing residues were present in more extended regions

toward the N and C termini than has previously been reported

(Robbins et al., 1991). Similar residue-specific and position-de-

pendent effects were observed for other NLS templates (Figures

S2 and S3). These findings indicate that various amino acids

have position-specific effects on activity throughout the entire

NLS region, in contrast with previous observations and the

minimum consensus of bipartite NLSs (Robbins et al., 1991).

Peptide Sequences bimax1 and bimax2, Designed
Using the NLS Profile, Bind Tightly to Full-Length
Importin Alphas
Simultaneous amino acid replacement at two positions within

NLSs revealed that the contribution of each residue to the overall

activity was in most cases independent and additive (Figure S3).

Thus, it is expected that NLS variants with the highest activities

can be designed by selecting the amino acids with the highest

scores at each position in the NLS profile. We designed two

putative inhibitor sequences (bimax1 and bimax2), each with an

optimal summed score but differing at nine positions (Figure 2A).

Both sequences bound tightly to the full-length yeast importin

a Kap60p (Figure 2C), in contrast with SV40 monopartite and

nucleoplasmin (NP) bipartite NLSs, which bound only to Kap60p-

DIBB, a variant lacking the autoinhibitory domain (Figure 2B).

Furthermore, these peptides bound tightly to full-length versions

of four mammalian importin a members (importins a1, a3, a6, and

a7, representatives of three subclasses of the mammalian impor-

tin a family), but did not bind to importin b1 (Figure 2D), whereas
49, September 22, 2008 ª2008 Elsevier Ltd All rights reserved 941
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SV40NLS did not bind to any of these importins (data not shown).

These findings indicate that both bimax1 and bimax2 are strong

and specific binders for the importin a family.

To determine the equilibrium dissociation constants (Kd) of

bimax1 and bimax2 for binding to importin a, surface plasmon

resonance (SPR) analyses were performed using a Biacore sys-

tem. NLS peptide variants fused with Trx-GFP were directly im-

Figure 2. Importin a-Binding Properties of Peptide Inhibitors

Designed Using the NLS Profile

(A) Two peptide sequences optimized from the NLS profile. Two peptide

sequences, bimax1 and bimax2, were designed by selecting residues with

the highest scores at each position, as represented in the NLS profile. Regions

corresponding to the N- and C-terminal basic stretches of the template NLS

are underlined.

(B) Binding assays for NLS variants and Kap60pDIBB. Thioredoxin (Trx)-GFP

fusions with SV40 NLS (SV40), nucleoplasmin NLS (NP), BPSV40 NLS

(BPSV), bimax1, and bimax2 (0.5 mM each) were incubated with Kap60pDIBB

fused with glutathione S-transferase (GST) in the indicated concentrations,

and the bound complexes were separated by native PAGE. GFP-NLS-

Kap60pDIBB complexes are indicated by an asterisk.

(C) Binding assays for NLS variants and the full-length Kap60p. In vitro binding

assays were carried out with the indicated GFP-NLS variants (0.5 mM) and

full-length Kap60p fused with GST in the indicated concentrations, as in (B).

(D) Binding assays for bimax1 and bimax2 and full-length mammalian importin

a members. The binding assays were carried out with GFP-bimax1 or GFP-

bimax2 (0.5 mM) and full-length importin a or importin b1 fused with GST

(0.5 mM), as in (B).
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mobilized on the sensor chip surfaces by thiol coupling. Various

concentrations of analytes (i.e., GST-Kap60p and GST-Kap60p-

DIBB) were injected into peptide-immobilized flow cells to obtain

SPR sensorgrams (Figure 3). During injection of analytes to refer-

ence cells on which Trx-GFP alone was immobilized, no nonspe-

cific binding was observed. The Kd values for these interactions

were determined through a nonlinear regression fitting to a Lang-

muir binding model using BIAevaluation software (Table 1). The

Kd of SV40NLS for binding to Kap60pDIBB was approximately

5 nM, which correlated roughly with those reported previously,

whereas the Kd values of BPSV40 NLS were about one order

of magnitude higher than previously reported values (Hodel

et al., 2001). Although this difference is possibly due to a different

construction of BPSV40 NLS or different experimental condi-

tions between the studies, the difference (197-fold) between

the Kd values of BPSV40 for binding to Kap60p and Kap60pDIBB

correlated roughly with those (120-fold) reported previously

(Hodel et al., 2001). Thus, the Kd values of bimax peptides for

binding to Kap60pDIBB was estimated by dividing the Kd values

(480 pM for bimax 1 and 4.4 pM for bimax 2) for the full-length

Kap60p by 197, as they were too low to be determined directly

(Table 1). Consequently, the estimated Kd values of bimax1

and bimax 2 for Kap60pDIBB was approximately 2.4 pM and

0.02 pM, respectively—the latter value being 4.8 million times

lower than that of the starting NLS template (NLSscore 7) (Table

1). The potential dimerization ability of GST (Kd = 0.34 mM)

(Vargo et al., 2004) may lead to a higher apparent affinity be-

cause of avidity effect. The avidity effect occurs through a simul-

taneous binding of a dimer of GST fusion proteins to two adja-

cent ligand molecules, resulting from a dense immobilization of

a ligand on a solid surface (Ladbury et al., 1995). However, it is

most likely that the GST-Kap60p and GST-Kap60pDIBB fusion

proteins bind to the immobilized ligands in monomer because

of low densities (9–18 fmol mm�2) of our ligands (Trx-GFP-NLS

fusion proteins) immobilized on sensor chip surfaces and rela-

tively low concentrations of analytes (GST-Kap60p fusion

proteins) applied to the sensor chips. The low concentrations

of ligands and analytes also resulted in little influence by mass

transfer limitation (analyte rebinding). Thus, these findings

show that both bimax peptide sequences have extremely high

affinities for importin a and that a strong peptide binder can be

designed using the activity-based peptide profile.

Both bimax1 and bimax2 Severely Inhibit Cell Growth
and Importin a-Mediated Nuclear Import in Yeast
Because the importin a/b pathway is the major activity for protein

nuclear import, blocking this pathway should inhibit cell growth.

We tested whether bimax1 and bimax2 inhibit the growth of

yeast. Expression of these sequences fused to GFP severely in-

hibited the growth of yeast, even when a low-copy plasmid was

used; BPSV40 had no effect on growth (Figure 4A), as was also

shown in a previous study (Hodel et al., 2006). This observation

suggests that both peptide sequences, even at low concentra-

tions, bind tightly to Kap60p in vivo to block the importin a/b

pathway. In mammalian cells, transfection of bimax expression

plasmids appeared to cause growth inhibition of the cells and

cell death in a portion of the cells (data not shown), although it

is not clear whether this cell death results from growth inhibition

or apoptosis.
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Figure 3. SPR Analysis of the Interactions between Importin a and NLS Variants

Trx-GFP fused with NLSscore 7 (A), SV40 NLS (B), BPSV40 NLS (C and D), bimax1 (E), and bimax2 (F) were immobilized on Biacore sensor chips by thiol coupling.

NLSscore 7 is the template NLS with activity score of 7, which was used for the generation of the NLS profile. The indicated concentrations of Kap60pDIBB (A–C)

and Kap60p (D–F) were injected into flow cells of the sensor chips in 60 ml injection volumes and at a flow rate of 10 ml min�1.
We next examined whether bimax1 and bimax2 inhibit nuclear

import activity in yeast. Inducible expression of bimax1 and bi-

max2 using the GAL1 promoter from pYES-Grx1-NLS plasmids

significantly inhibited the nuclear localization of GUS-GFP fused

with the SV40 NLS and nucleoplasmin bipartite NLS, but had

only a minor effect on the NLS of Nab2p, a poly(A) RNA binding

protein, in which transport activity is mediated by Kap104p

(transportin) (Siomi et al., 1998; Truant et al., 1998; Figure 4B).

These findings suggest that bimax1 and bimax2 are potent

and selective inhibitors of the importin a/b pathway.

Both bimax1 and bimax2 Specifically Inhibit Nuclear
Import Activity Mediated by the Importin a/b Pathway
in Mammalian Cells
We examined whether the specific inhibitory effects of bimax1

and bimax2 also occur in mammalian cells, in which multiple

importin a members are present. Coexpressions of bimax1 or bi-

max2 with GUS-GFP-NLS reporters specifically inhibited the im-

portin a-mediated nuclear import pathway (SV40 and NP NLSs)

but not the importin b1-mediated pathway (Snail and SREBP-2,

a zinc finger transcription factor and sterol regulatory element-

binding transcription factor 2, respectively) (Nagoshi et al.,

1999; Yamasaki et al., 2005), the transportin-mediated pathway

(hnRNP A1) (Pollard et al., 1996), or the importin-7-mediated
Chemistry & Biology 15, 940–
pathway (EZI, a zinc finger protein) (Saijou et al., 2007; Figure 5A).

These findings indicate that the bimax1 and bimax2 inhibitors are

specific to the importin a/b pathway and are likely to be effective

for multiple members of importin a in mammalian cells.

Importin a-Dependent Noncanonical NLSs of p107
and PIASy Determined Using Bimax Inhibitors
We also tested the effects of the inhibitors on the localization of

two nuclear proteins p107, a retinoblastoma-associated protein,

and PIASy, a SUMO E3 ligase, for which nuclear import receptors

are unknown. When these proteins, fused with GFP, were coex-

pressed with either of the peptide inhibitors, their localization to

the nucleus was significantly inhibited (Figure 5), suggesting

that this localization is dependent on the importin a/b pathway.

This result further suggests that these two proteins have classical

NLSs bearing the consensus basic stretches. The p107 protein

(1-1063), however, contains no potential NLS matching the

minimum consensus patterns of the classical NLSs; it does

however contain a bipartite NLS-like sequence (p107-NLS,

1021-QKTKKRVIAISGDADSPAKRLCQE) at the C terminus.

PIASy (1-510) contains a putative monopartite NLS (PIASy-

NLS1, 52-PELFKKIKELYE) matching the monopartite consensus

pattern in the N-terminal region, whereas there exists a non-

canonical monopartite NLS-like sequence (PIASy-NLS2,
949, September 22, 2008 ª2008 Elsevier Ltd All rights reserved 943
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494-PRPKRRCPFQK) at the C terminus. The deletion of the C ter-

minus from either of these proteins (p107DC and PIASyDC) led to

a significant loss in nuclear import activity (Figure 5B), suggesting

that p107-NLS and PIASy-NLS2 play a major role in the nuclear

import of these two proteins. GUS-GFP fusions with p107-NLS

and PIASy-NLS2 were localized to the nucleus, and their nuclear

localizations were effectively inhibited by coexpression with

bimax2, whereas PIASy-NLS1 exhibited no considerable nuclear

import activity (Figure 5B). These findings indicate that the impor-

tin a-mediated nuclear localizations of p107 and PIASy are di-

rected by p107-NLS and PIASy-NLS2, respectively, but not by

NLSs with known consensus patterns. Moreover, the fact that

neither the deletion of these NLSs nor the inhibition by bimax2

expression completely removed the nuclear import activities of

these proteins suggests that pathways other than the importin

a/b pathway make a partial contribution to their nuclear import.

Importin a-Inhibitor Complex Is Resistant to Cargo
Release Activities in the Nucleus
The in vitro and in vivo analyses described previously suggest

that the observed nuclear import inhibition by bimax1 and

bimax2 is due to an importin b1-independent interaction of the in-

hibitors with importin a, which circumvents the cargo release pro-

cess mediated by interaction of importin b1 and Ran-GTP. There

remains the possibility that the importin a-inhibitor complex is

dissociated by another cargo release factor, such as Nup2p or

Cse1p-Ran-GTP. We examined whether Kap60p stably forms

a complex with the inhibitor in vivo. We constructed a yeast strain

(KAP60-GFP) in which a Kap60p-HA-GFP fusion protein was ex-

pressed under the control of its own promoter at the native chro-

mosomal locus. The strain was transformed with pYES-Grx1-

NLS-FLAG constructs, and interaction of Kap60p-HA-GFP with

the induced NLS variants was analyzed by immunoprecipitation.

Western blotting showed that the expression of Grx1-bimax2-

Flag was considerably lower than that of other Grx1 fusions

(Figure 6A), indicating a cell toxic effect of bimax2. Nevertheless,

only Grx1-bimax2-Flag was coimmunoprecipitated with a signif-

Table 1. Dissociation Constants for the Interaction between

Importin a and NLS Variants

NLS Importin a Kd (nM)

NLSscore 7 Kap60pDIBB 96 ± 9

SV40 Kap60pDIBB 4.8 ± 0.2

BPSV40 Kap60pDIBB 0.34 ± 0.1

BPSV40 Kap60p 67 ± 15

bimax1 Kap60p 0.48 ± 0.17

bimax2 Kap60p 0.0044 ± 0.0009

bimax1 Kap60pDIBB (0.0024)a

bimax2 Kap60pDIBB (0.00002)a

The sensorgrams shown in Figure 3 were fitted to 1:1 Langmuir model

using BIAevaluation 3.1 software to determine dissociation equilibrium

constants (Kd). The averages of the values obtained for four different

concentrations of importin a and the standard errors are given for the

indicated interactions.
a Values estimated from the Kd values of bimax 1/2 for binding to Kap60p.

These Kd values were divided by 197 Kd, which is the difference in Kd

between the full-length and truncated Kap60p, calculated from the Kd

values of BPSV40.
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icant amount of Kap60p-HA-GFP (Figure 6A). This result confirms

that the bimax inhibitors form a stable complex with importin

a independently of importin b1 in vivo.

It is known that ablation of the cargo release machinery leads

to nuclear accumulation of importin a (Gilchrist and Rexach,

2003; Harreman et al., 2003; Hood et al., 2000; Hood and Silver,

1998; Solsbacher et al., 2000). We examined whether the sub-

cellular localization of Kap60p is affected by inhibitor expression.

Prior to expression, Kap60p-GFP was localized throughout the

cell with some accumulation in the nucleus. This localization

pattern was altered to one of intensive nuclear localization by ex-

pression of Grx1-bimax2, whereas no significant change was

observed as a result of expression of the SV40 or BPSV40 NLS

fusion (Figure 6B). Similar localization changes were observed

in mammalian cells. Importins a1, a3, and a7 fused with GFP

were partially nuclear, though it has been reported that endoge-

nous importin alphas are more evenly distributed throughout the

Figure 4. Expression of bimax1 and bimax2 Peptides in Budding

Yeast

(A) Growth inhibition of yeast by bimax peptide expression. Yeast was trans-

formed with high-copy plasmids (pGAD-GFP) or low-copy plasmids (pAUA-

GFP), encoding the indicated peptide sequences (BPSV40 NLS, bimax1,

and bimax2) to express their GFP fusions. Transformed cells were plated on

a quarter of SD plates lacking leucine or uracil, and cultured for 3 days at 30�C.

(B) Inhibition assay for nuclear import activity in yeast. GUS-GFP fused with the

NLSs indicated in the left column and a yeast protein Grx1p fused with the

NLSs indicated in the top line were simultaneously expressed using galac-

tose-inducible vectors (pYES-GFP3 and pYES-Grx1). GFP fluorescence was

observed 2 hr after galactose induction.
lsevier Ltd All rights reserved
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cells (Miyamoto et al., 2002). Nevertheless, these proteins were

localized completely to the nucleus on coexpression with bi-

max2; the localization of importin b1 was unaffected by bimax2

(Figure 6C). These findings suggest that the bimax inhibitors

antagonize cargo release activities to restrict importin a recycling

and deplete a pool of free importin a.

DISCUSSION

‘The peptide inhibitors bimax1 and bimax2 efficiently block nu-

clear import activity mediated by the importin a/b pathway. The

high affinity of these inhibitors for importin a (Kds in the picomolar

Figure 5. Specific Inhibition of the Importin a/b Pathway by bimax1

and bimax2 in Mammalian Cells

(A) Inhibition assay for nuclear import activity in mammalian cells. Cotransfection

into NIH 3T3 cells was conducted using reporter plasmids (pCMV-GFP2 or

pCMV-GFP3) encoding GFP or GUS-GFP fused with the NLSs or proteins (as in-

dicated in the left column) and competitor expression plasmids (pCMV-Grx1)

encoding Grx1p fused with the NLSs (as indicated in the second line). The num-

ber of cells exhibiting nuclear localization of the GFP reporters was recorded as

a percentage of the total GFP-positive cells, whereas cells exhibiting localization

to both the nucleus and cytoplasm were not counted as nuclear localized cells.

(B) Identification of NLSs responsible for the nuclear import of PIASy and

p107. Reporter plasmids encoding GFP fused with PIASy or p107 were co-

transfected with the bimax2 competitor expression plasmid. Reporter plas-

mids encoding GFP fused with the C-terminal truncated versions of PIASy

and p107 (PIASyDC [1–493] and p107DC [1–1020], respectively) were trans-

fected into NIH 3T3 cells. Reporter plasmids encoding GUS-GFP fused with

p107-NLS, PIASy-NLS1 or PIASy-NLS2 were cotransfected with the bimax2

competitor expression plasmid.
Chemistry & Biology 15, 940–9
range) allows importin b1-independent binding to importin a and

prevents the importin a-inhibitor complex from the dissociation

that would normally occur, allosterically modulated by cargo re-

lease factors, including importin b1 and Ran-GTP. Although

BPSV40 NLS is able to bind importin a independently of importin

b1, it cannot inhibit nuclear import activity. Hence, Nup2p or

Cse1p-Ran-GTP may make a major contribution to the dissocia-

tion of the BPSV40-importin a complex in the nucleus. Given that

the apparent Kd of BPSV40 for the full-length Kap60p is in the low

nanomolar range (Hodel et al., 2001), NLS peptides that can

Figure 6. Resistance of Importin a-bimax Inhibitor Complex to

Cargo Release Activities

(A) Kap60p-bimax2 complex detected by immunoprecipitation. pYES-Grx1-

FLAG plasmids encoding the indicated NLSs (SV40, BPSV40, and bimax2)

were introduced into a KAP60-GFP strain, which expresses Kap60p fused

with a hemagglutinin (HA)-GFP tag. Grx1-NLS-FLAG fusion proteins were

induced with galactose for 3 hr in yeast in a log phase. Proteins immunoprecip-

itated with anti-FLAG agarose were subjected to western blotting with anti-

bodies against the FLAG and HA tags.

(B) Increased nuclear accumulation of Kap60p by bimax2. The indicated Grx1-

NLS-FLAG fusion proteins were induced in the KAP60-GFP strain, as in (A).

(C) Increased nuclear accumulation of importin alphas by bimax2 in mamma-

lian cells. Plasmids (pCMV-GFP2) encoding GFP fusion proteins with importins

a1, a3, a7, and b1 were cotransfected with the competitor expression plas-

mids encoding bimax2 into NIH 3T3 cells. Photos are representatives of the

observed GFP localization patterns; for GFP-importin a1, most cells exhibiting

nonnuclear phenotypes of GFP (35% of the total GFP-positive cells) were

changed to cells with a nuclear phenotype by coexpression of bimax2.
49, September 22, 2008 ª2008 Elsevier Ltd All rights reserved 945
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overcome cargo release activities require a Kd for importin a in the

high picomolar range. This high-affinity barrier to antagonizing

cargo release activity would prevent the occurrence of natural

NLSs that can inhibit their own nuclear import pathway.

The high affinity of bimax peptides allows us to observe their

inhibitory effect using tranfected plasmids that express fusion

proteins containing the peptide inhibitors. In mammalian cells

and yeast, in vitro nuclear transport assays can be employed

in a reconstitution system with permeabilized semi-intact cells

and recombinant importin proteins and/or cytosol (Görlich

et al., 1994; Schlenstedt et al., 1993). Although this system is

valuable in analyzing the nuclear transport process for a protein,

difficulty exists in reconstituting cell environments for different

species and cell types, especially for proteins whose nuclear

import is regulated by a change in physiology or an artificial con-

dition. The bimax inhibitors, coupled with the plasmid-based ex-

pression, would complement or substitute for the reconstitution

assays and provide a useful reagent to identify the importin a/b

pathway, as shown for p107 and PIASy.

Many currently available peptide inhibitors have been used as

reagents with a cell permeable property. An NF-kB NLS-derived

cell-permeable peptide (SN50) has been reported to inhibit the

nuclear import of NF-kB, AP-1, NFAT, and STAT1 (Lin et al.,

1995; Torgerson et al., 1998). The high dosage (75–100 mM) re-

quired for effective inhibition (Torgerson et al., 1998) suggests

that, unlike bimax inhibitors, SN50 is likely to act as a simple

competitive inhibitor for a subset of importin a/b dimers. In addi-

tion, recent studies showed that c-Fos and c-Jun, components

of AP-1, are not imported to the nucleus through the importin

a/b pathway (Arnold et al., 2006; Forwood et al., 2001; Wald-

mann et al., 2007) and that STAT1 binds to the minor binding

site of importin a in contrast with the NF-kB NLS (Fagerlund

et al., 2005; Sekimoto et al., 1997). These observations suggest

that SN50 may also inhibit nuclear import pathways that do not

involve importin a. Thus, the bimax inhibitors could also be

used as cell-permeable peptide reagents that are more sensitive

and specific to the importin a/b pathway than SN50.

Peptide inhibitors in general are thought to have higher affini-

ties for targets (especially for interfaces involved in protein-pro-

tein interaction) than small molecule inhibitors, owing to their

potentially larger contact with the targets. It has been found

that only a small subset of amino acids at a particular protein in-

terface, termed a hot spot, is responsible for a major binding

affinity, suggesting that large molecules are not necessary for

hot spot targeting (Neduva and Russell, 2006; Wells and

McClendon, 2007). The findings of the present study suggest

that residues with a minor role in interaction are also important

in developing a high affinity binder. The hot spot for importin

a-NLS interaction exists in the major and minor binding pockets

of importin a, both of which interact with the core basic stretches

of traditional NLSs (Conti et al., 1998). The NLS profile generated

in this study shows not only a major contribution of the core basic

stretches, but also a moderate or minor contribution of the resi-

dues in the linker and flanking regions. Additional mutational

analyses showed that the contribution of each residue within

an NLS to the entire activity is independent and additive. Al-

though the effect of each residue within the non-hot-spot regions

is small, the sum of the minor contributions can greatly improve

the affinity of peptide binders. This additive contribution may be
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based on the additivity principle in protein thermodynamics

(Mildvan, 2004; Wells, 1990). The additivity rule has been adop-

ted to engineer improved proteins (Fox et al., 2007; Sandberg

and Terwilliger, 1993); however, a global design is restricted

because additivity occurs only if the residues are independent

and apart in the protein structure (Mildvan, 2004; Wells, 1990).

Although it is not clear whether the additivity observed for NLS

peptides corresponds to the thermodynamics additivity ob-

served for proteins, our observations indicate that the additivity

based on activity scale measured by our nuclear import assay

can be applied for every residue within NLSs and suggest that

the additivity-based design of peptide inhibitors is applicable

to other unstructured peptides and protein motifs. The genera-

tion of an activity-based profile of a 20 aa peptide could be

achieved within 4–6 weeks by a single researcher (or in a shorter

period using an automated plasmid isolation machine).

SIGNIFICANCE

Peptide inhibitors that disrupt protein-protein interaction

are a good alternative to small-molecule inhibitors because

of their higher potency, specificity, and safety for therapeu-

tic use. Two strategies, directed evolution and rational de-

sign, have been currently employed in developing peptide in-

hibitors. These strategies are, however, often unsuccessful

in generating high-affinity peptide binders. This study pres-

ents a strategy for the development of potent peptide inhib-

itors without using protein structural information. This

method uses an activity-based profile generated for a linear

peptide, which represents the functional contribution of

various amino acids substituted at each position within a

template peptide sequence. Optimal peptides can be de-

signed by selecting amino acids with the highest contribu-

tion at each position from the activity-based profile. Validity

of this method has been shown by using an NLS template se-

quence. The designed peptides (bimax1 and bimax2) bind

tightly to importin a independently of importin b, which con-

fers resistance to cargo release activities in the nucleus.

Both bimax1 and bimax2 are identified as the first inhibitors

that specifically inhibit the classical nuclear import pathway

mediated by importin a. Using these inhibitors we have

found that the nuclear import of p107 and PIASy is directed

by noncanonical NLSs that depend on the importin a/b path-

way, showing the utility of these inhibitors for studying cel-

lular signaling events involving nuclear import. This strategy

should enable the development of potent inhibitors from

a peptide seed with weak or physiological binding activity,

and complements traditional directed evolution and rational

design approaches.

EXPERIMENTAL PROCEDURES

Plasmid Construction

The genomic coding sequence of yeast importin a (the full-length Kap60p/

Srp1p) was PCR amplified with a primer set (Kap60-N and Kap60-C) (Table

S1), using yeast (S. cerevisiae) genomic DNA as template. A DNA fragment en-

coding its N-terminally truncated variant (Kap60pDIBB) was generated by PCR

with a primer set (Kap60D-N and Kap60-C) to preclude the N-terminal region

(residues 1–71) corresponding to the IBB domain. The PCR fragments were di-

gested with restriction enzymes, whose sites were included in the primer
lsevier Ltd All rights reserved
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sequences, and cloned into the corresponding sites of pGEX-6P-1 (Amersham

Biosciences, GE Healthcare; Tokyo, Japan). The cDNA sequences of the full-

length human importins a1 (accession number CAC83080), a3 (AAH34493), a6

(AAH47409), a7 (AAC15233), and b1 (AAH36703) were PCR amplified with

primers (Table S1) using oligo(dT)-primed first-strand cDNAs from human fetal

brain (Nippon Gene; Toyama, Japan) for importin a3 and human full-length

cDNA clones (Toyobo; Osaka, Japan) for the others. The amplified fragments

were cloned into the corresponding sites of pGEX-6P-1 or pGEX-8P, a multi-

cloning site (MCS)-modified version of pGEX-6P-1. For thioredoxin (Trx)-GFP

fusions, the GFP coding region derived from an enhanced GFP expression

vector pQBI25-fC1 (Qbiogene; Carlsbad, CA) was amplified with a primer

set (GFP-N and GFP-C), digested with NcoI and XhoI, and inserted into the

corresponding site of a modified pET-32a (Novagen, Merck; Darmstadt,

Germany), in which the XbaI site in pET-32a had been precluded, to generate

pET-GFP. Double-stranded oligonucleotides encoding NLS peptides, includ-

ing SV40, nucleoplasmin (NP), BPSV40, bimax1, and bimax2 (Table S1), were

inserted into the XbaI and BamHI sites of pET-GFP to generate plasmids

encoding Trx-GFP-NLS fusion proteins. In a similar way, plasmids encoding

GST-NLS fusion proteins, which were used for a competition binding analysis,

were generated by inserting the same oligonucleotides into the XbaI and BglII

sites of pGEX-8P. A universal GUS-GFP expression plasmid pTUE-GFP3 was

used for the scoring analysis for NLS activity in yeast. pTUE-GFP3 encodes the

enhanced GFP fused with bacterial b-glucuronidase (GUS) under the control of

a Tet operator-containing promoter and chimeric terminator in a vector derived

from pGAD424 (Clontech; Palo Alto, CA). The GFP fused with the GUS protein

brought about the cytoplasmic localization of the fusion protein, enabling

a more sensitive assay than the native GFP protein. A Tet activator expression

plasmid pGBKT-tTA was generated by cloning the coding region of tTA from

pTet-Off (Clontech) into the XhoI and BamHI sites of a derivative of pGBKT7

(Clontech). A yeast-specific GFP expression plasmid pGAD-GFP was gener-

ated by replacement of the HindIII fragment of pGAD424 with a fragment con-

taining the GFP-MCS region derived from pCMV-GFP2. A low-copy plasmid

pAUA-GFP was derived from pAUR112 (Takara; Shiga, Japan) and contained

the GFP-MCS region under the control of the adh1 promoter. Double-stranded

oligonucleotides encoding bimax1 and bimax2 were inserted into the XbaI and

BamHI sites of pGAD-GFP and pAUA-GFP, and the resulting constructs were

used for a yeast viability test. For an inducible expression plasmid pYES-

GFP3, a SmaI fragment containing the Tet operator-minimal promoter region

of pTUE-GFP3 was replaced with the GAL1 promoter fragment of pYES-

Trp2 (Invitrogen; Tokyo, Japan). Another inducible plasmid pYES-Grx1 was

generated by inserting a PCR-amplified yeast genomic fragment that

encode-Grx1p (a glutaredoxin with a molecular weight of approximately

12 kDa) into the PvuII site of pYES-Trp2. A double-stranded oligonucleotide

encoding a FLAG tag was inserted into the BamHI and SacI sites of pYES-

Grx1 to generate pYES-Grx1-FLAG. DNA fragments encoding NLSs (SV40,

BPSV40, bimax1, and bimax2) were inserted into the XbaI and BamHI sites

of pYES-GFP3 and the NheI and BamHI sites of pYES-Grx1 or pYES-Grx1-

FLAG. An Nab2 NLS, which corresponded to a 50 aa region (residues 200–

249) of the yeast Nab2p (a poly(A) RNA binding protein), was PCR amplified

with a primer set (Nab2-N and Nab2-C) and inserted into pYES-GFP3. A mam-

malian GFP expression plasmid pCMV-GFP2 was generated by replacement

of a MCS located at the 30 end of the GFP coding region of pQBI25-fC1 with

another one containing XbaI and BamHI sites. A plasmid pCMV-GFP3 for ex-

pression of a GUS-GFP fusion protein was generated by inserting the GUS

coding fragment into the NheI site located at the 50 end of the GFP coding se-

quence of pCMV-GFP2. For an expression plasmid pCMV-Grx1 used for

a competitor NLS expression, the Grx1 coding fragment was inserted into

the NheI and BamHI sites of pCMV-GFP2 to replace the GFP coding region.

Double-stranded oligonucleotides encoding NLS peptides or cDNA fragments

were inserted into the XbaI and BamHI sites of these plasmids. The cDNA frag-

ments encoding Snail, PIASy, EZI, and the N-terminal region (residues 1–481)

of SREBP-2 were PCR amplified with oligo(dT)-primed first-strand cDNAs

from human as template, and cDNAs of hnRNP-A1 and p107 were PCR-am-

plified with first-strand cDNAs from mouse using specific primers (Table S1).

Systematic Amino Acid Replacement Analysis

Double-stranded oligonucleotides encoding NLS variants were inserted into

the XbaI and BamHI sites of pTUE-GFP3. We used double-stranded oligonu-
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cleotides containing NN(G/C) at a position of an amino acid residue to be

replaced (biNC-m1 and cbiNC-m1 as an example of oligonucleotides; see

Table S1). Plasmid clones encoding NLSs containing 13–19 different amino

acids at each position within an NLS template were routinely selected from

48 randomly selected bacterial colonies. The selected plasmids were intro-

duced into yeast, and the extents of the nuclear localization of the expressed

GUS-GFP-NLS fusion proteins were assayed in yeast.

Yeast Transformation, Mammalian Cell Transfection

SFY526 yeast strain (Clontech) was cotransformed with 0.5 mg each of pTUE-

GFP3 and pGBK-tTA, and cultured with SD medium lacking leucine and

tryptophan in 48-well plates at 30�C. Alternatively, yeast was transformed

with 0.5 mg of pGAD-GFP or pAUA-GFP and cultured with SD medium lacking

leucine or uracil. The yeast expressing tTA grew very slowly, and so the trans-

formed cells were cultured for at least 3 days. For the GAL1 promoter-driven

constructs, yeast was cotransformed with 0.5 mg each of a GFP reporter

(pYES-GFP3) and a competitor NLS expression plasmid (pYES-Grx1), and

the cells grown in SD medium lacking leucine and tryptophan were transferred

to YPD medium containing 0.1% galactose instead of 2% glucose and grown

for 2–3 hr. KAP60-GFP strain was constructed by transformation with a PCR

fragment amplified with a primer set (Kap-GFP and Leu2-Kap) and using the

pGAD-GFP plasmid as template. The amplified fragment comprised a hemag-

glutinin tag (HA)-GFP-Tadh1-Leu2 gene cassette flanked by 44 bp of homology

regions of KAP60 to allow in-flame fusion with the HA-GFP tag at the C-terminal

coding region of Kap60p. StrainYNN141 (MATa his3-532 trp1-289 ura3-1ura3-2

ade2 leu2::HIS3), a derivative of YNN140 (National Institute of Technology

and Evaluation, Biological Resource Center, Kisarazu, Chiba, Japan) was

transformed with the PCR fragment and a strain was selected with SD medium

lacking leucine. The correct insertion into the yeast chromosome was verified

by PCR followed by sequencing. The mouse fibroblast cell line NIH 3T3 was

grown at 37�C under 5% CO2 in DMEM supplemented with 10% calf serum

and 2 mM l-glutamine. Transfections were performed in 5 3 104 cells per milli-

liter in 24-well plates or 35 mm culture dishes, and the cells were cotransfected

with approximately 0.4 mg of a GFP reporter plasmid and 0.4 mg of a competitor

expression plasmid (pCMV-Grx1) using 2 ml of jet-PEI reagent (Polyplus-trans-

fection; Strasbourg, France) according to the manufacturer’s instructions and

-cultured for 36–48 hr. GFP expressed in these transformed cells was observed

using an epifluorescence microscope, model BX51 (Olympus; Tokyo, Japan),

with an excitation filter specific to 460–490 nm.

Production of Recombinant Proteins

Proteins fused with glutathione S-transferase (GST) were expressed in E. coli

BL21 by induction with 0.6 mM isopropyl-beta-D-thiogalactopyranoside

(IPTG) followed by sequential incubation each for 2 hr at 37�C and 30�C.

The harvested bacterial pellets were resuspended with extraction buffer

(20 mM HEPES-NaOH [pH 7.5], 0.5 M NaCl, 10 mM EDTA, 0.1% Triton

X-100, and 5% protease inhibitor cocktail [Sigma-Aldrich]), lysed by sonica-

tion, and cleared by centrifugation. The supernatants were loaded onto

columns containing glutathione sepharose 4B (Amersham Biosciences), and

the columns were washed with washing buffer (20 mM HEPES NaOH [pH

7.5], 0.15 M NaCl, and 1 mM EDTA) and eluted with the washing buffer contain-

ing 10 mM glutathione. Trx-GFP proteins fused with various NLS sequences

were expressed in BL21(DE3) by induction with 1 mM IPTG followed by se-

quential incubation each for 2 hr at 37�C and 30�C, and purified with Ni-NTA

His-Bind resin (Novagen) under native conditions, according to the manufac-

turer’s instructions. The purified proteins were dialyzed with the washing

buffer.

Importin Binding Assay

The purified GST-importin fusion protein was incubated with a Trx-GFP-NLS

protein in 20 ml of reaction buffer (20 mM HEPES-NaOH [pH 7.4], 0.1 M

NaCl, 1 mM DTT, 1 mM EDTA, 5 mM MgCl2, 10% glycerol, and 0.1% BSA)

for 60 min at room temperature. The reactions were electrophoresed on native

7.5% polyacrylamide gel/1 3 Tris-glycine buffer containing 1 mM DTT and

10% glycerol for 50 min under a constant voltage of 160 V. The GFP fluores-

cence of Trx-GFP fusion proteins on the gel was observed with a fluorescence

image analyzer, Molecular Imager FX (Bio-Rad Japan; Tokyo, Japan).
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Surface Plasmon Resonance Analysis

Surface plasmon resonance (SPR) experiments were performed using a Bia-

core 3000 system (GE Healthcare; Tokyo, Japan). All experiments were carried

out at 25�C at a flow rate of 10 ml min�1 in HBS running buffer (10 mM HEPES

[pH 7.4], 150 mM NaCl, 0.005% surfactant P20). CM5 sensor chip surfaces

were activated by using a thiol coupling kit (GE Healthcare). NLS peptide var-

iants fused with Trx-GFP were immobilized to the activated surfaces by thiol

coupling via cysteine residues of the Trx-GFP protein at a density of 500–

1000 resonance units (RU). Various concentrations of analytes (GST-Kap60p

and GST-Kap60pDIBB) were injected into flow cells of the sensor chips to

obtain SPR sensorgrams for the interaction of the peptides with the importin

a variants. After each injection, the chip surfaces were regenerated with 5 or

10 ml of 10 mM NaOH. RUs of reference cells to which Trx-GFP alone was im-

mobilized were subtracted from RUs of the peptide sensorgrams, but bulklike

effects probably due to a weak interaction were still observed in several sen-

sorgrams. Thus, for the curve-fitting analysis, we did not consider RUs ob-

tained for a period of 10 s after the start and the end of analyte injection, re-

spectively. The sensorgrams were analyzed by nonlinear regression, local

fitting (each sensorgram separately) to 1:1 Langmuir model using BIAevalua-

tion 3.1 software to determine the association and dissociation rate constants

(kon and koff) and the dissociation equilibrium constants (Kd = koff/kon).

Immunoprecipitation

A 50 ml culture of exponentially growing yeast cells was induced with galac-

tose for 3 hr and collected by centrifugation. The collected cells were lysed

with glass beads and an extraction buffer (20 mM HEPES-NaOH [pH 7.5],

0.1 M NaCl, 5 mM MgCl2, 5 mM EDTA, 5% glycerol, 0.5% Triton X-100, and

protease inhibitor cocktail [Roche; Tokyo, Japan]). Lysates were incubated

with anti-FLAG M2 agarose (Sigma-Aldrich Japan; Tokyo, Japan) for 2 hr at

4�C, and the beads washed four times with extraction buffer. Proteins bound

to the beads were eluted with 0.1 M glycine (pH 3.5) and the eluates mixed with

Laemmli sample buffer. One-tenth aliquots of the samples were subjected to

western blotting with anti-FLAG M2 and anti-HA monoclonal antibodies

(Sigma), and the blots developed by using a western blue stained substrate

for alkaline phosphatase (Promega; Tokyo, Japan).

SUPPLEMENTAL DATA

Supplemental Data include three figures and one table and can be found

with this article online at http://www.chembiol.com/cgi/content/full/15/9/

940/DC1/.
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Fagerlund, R., Kinnunen, L., Köhler, M., Julkunen, I., and Melén, K. (2005).

NF-kB is transported into the nucleus by importin a3 and importin a4.

J. Biol. Chem. 280, 15942–15951.
948 Chemistry & Biology 15, 940–949, September 22, 2008 ª2008 El
Forwood, J.K., Lam, M.H., and Jans, D.A. (2001). Nuclear import of Creb and

AP-1 transcription factors requires importin-b 1 and Ran but is independent of

importin-a. Biochemistry 40, 5208–5217.

Fox, R.J., Davis, S.C., Mundorff, E.C., Newman, L.M., Gavrilovic, V., Ma, S.K.,

Chung, L.M., Ching, C., Tam, S., Muley, S., et al. (2007). Improving catalytic

function by ProSAR-driven enzyme evolution. Nat. Biotechnol. 25, 338–344.

Gilchrist, D., Mykytka, B., and Rexach, M. (2002). Accelerating the rate of dis-

assembly of karyopherin.cargo complexes. J. Biol. Chem. 277, 18161–18172.

Gilchrist, D., and Rexach, M. (2003). Molecular basis for the rapid dissociation

of nuclear localization signals from karyopherin a in the nucleoplasm. J. Biol.

Chem. 278, 51937–51949.

Görlich, D., and Kutay, U. (1999). Transport between the cell nucleus and the

cytoplasm. Annu. Rev. Cell Dev. Biol. 15, 607–660.

Görlich, D., Prehn, S., Laskey, R.A., and Hartmann, E. (1994). Isolation of a

protein that is essential for the first step of nuclear protein import. Cell 79,

767–778.

Görlich, D., Vogel, F., Mills, A.D., Hartmann, E., and Laskey, R.A. (1995). Dis-

tinct functions for the two importin subunits in nuclear protein import. Nature

377, 246–248.

Harel, A., and Forbes, D.J. (2004). Importin b: conducting a much larger cellular

symphony. Mol. Cell 16, 319–330.

Harreman, M.T., Hodel, M.R., Fanara, P., Hodel, A.E., and Corbett, A.H. (2003).

The auto-inhibitory function of importin a is essential in vivo. J. Biol. Chem.

278, 5854–5863.

Hodel, A.E., Harreman, M.T., Pulliam, K.F., Harben, M.E., Holmes, J.S., Hodel,

M.R., Berland, K.M., and Corbett, A.H. (2006). Nuclear localization signal re-

ceptor affinity correlates with in vivo localization in Saccharomyces cerevisiae.

J. Biol. Chem. 281, 23545–23556.

Hodel, M.R., Corbett, A.H., and Hodel, A.E. (2001). Dissection of a nuclear

localization signal. J. Biol. Chem. 276, 1317–1325.

Hood, J.K., and Silver, P.A. (1998). Cse1p is required for export of Srp1p/im-

portin-a from the nucleus in Saccharomyces cerevisiae. J. Biol. Chem. 273,

35142–35146.

Hood, J.K., Casolari, J.M., and Silver, P.A. (2000). Nup2p is located on the nu-

clear side of the nuclear pore complex and coordinates Srp1p/importin-alpha

export. J. Cell Sci. 113, 1471–1480.

Jans, D.A., Xiao, C.Y., and Lam, M.H. (2000). Nuclear targeting signal recogni-

tion: a key control point in nuclear transport? Bioessays 22, 532–544.

Ladbury, J.E., Lemmon, M.A., Zhou, M., Green, J., Botfield, M.C., and Schles-

singer, J. (1995). Measurement of the binding of tyrosyl phosphopeptides to

SH2 domains: a reappraisal. Proc. Natl. Acad. Sci. USA 92, 3199–3203.

Lange, A., Mills, R.E., Lange, C.J., Stewart, M., Devine, S.E., and Corbett, A.H.

(2007). Classical nuclear localization signals: definition, function, and interac-

tion with importin a. J. Biol. Chem. 282, 5101–5105.

Lin, Y.Z., Yao, S.Y., Veach, R.A., Torgerson, T.R., and Hawiger, J. (1995). Inhi-

bition of nuclear translocation of transcription factor NF-k B by a synthetic

peptide containing a cell membrane-permeable motif and nuclear localization

sequence. J. Biol. Chem. 270, 14255–14258.

Mildvan, A.S. (2004). Inverse thinking about double mutants of enzymes.

Biochemistry 43, 14517–14520.

Miyamoto, Y., Hieda, M., Harreman, M.T., Fukumoto, M., Saiwaki, T., Hodel,

A.E., Corbett, A.H., and Yoneda, Y. (2002). Importin a can migrate into the nu-

cleus in an importin b- and Ran-independent manner. EMBO J. 21, 5833–5842.

Nagoshi, E., Imamoto, N., Sato, R., and Yoneda, Y. (1999). Nuclear import of

sterol regulatory element-binding protein-2, a basic helix-loop-helix-leucine

zipper (bHLH-Zip)-containing transcription factor, occurs through the direct

interaction of importin b with HLH-Zip. Mol. Biol. Cell 10, 2221–2233.

Neduva, V., and Russell, R.B. (2006). Peptides mediating interaction networks:

new leads at last. Curr. Opin. Biotechnol. 17, 465–471.

Pollard, V.W., Michael, W.M., Nakielny, S., Siomi, M.C., Wang, F., and Drey-

fuss, G. (1996). A novel receptor-mediated nuclear protein import pathway.

Cell 86, 985–994.
sevier Ltd All rights reserved

http://www.chembiol.com/cgi/content/full/15/9/940/DC1/
http://www.chembiol.com/cgi/content/full/15/9/940/DC1/


Chemistry & Biology

Design of Nuclear Import Inhibitor
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